Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
Indian J Dermatol Venereol Leprol ; 89(2): 332, 2023.
Article in English | MEDLINE | ID: covidwho-2265039
2.
Forensic Sci Med Pathol ; 18(4): 549-553, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2035327

ABSTRACT

A 17-year-old male with no previous medical history was admitted 2 days before his death to a local hospital after mild dyspnea. Electrocardiography, chest radiography, and blood analysis revealed no abnormalities. Blood oxygen saturation was 99%, and SARS-CoV-2 nasopharyngeal swabs tested negative; thus, he was discharged without prescriptions. After 2 days, the subject died suddenly during a pool party. Forensic autopsy was performed analyzing all anatomical districts. Cardiac causes were fully excluded after deep macroscopic and microscopic evaluation; lung and brain analyses showed no macroscopic pathology. Finally, a large subglottic solid mass was detected. The whitish neoplasm showed an aggressive invasion pattern to the thyroid and adjacent deep soft tissues and occluded the trachea. High-power microscopy showed sheets of small, uniform cells with scant cytoplasm; round nuclei; and small, punctate nucleoli, with immunohistochemical expression of CK8-18, AE1/AE3, and CD99. Using FISH analysis, the break-apart molecular probes (EWSR1 (22q12) Break - XL, Leica Biosystem, Nussloch, Germany) showed distinct broken red and green fluorochromes, diagnostic of Ewing sarcoma. The neoplasm was characterized as adamantinoma-like Ewing sarcoma, and the mechanism of death was identified as airway obstruction. The rarity of the case resides in the circumstances of death, which pointed to the possibility of sudden unexpected death due to heart disease, but an oncological cause and the underlying mechanism were finally diagnosed. The best method to perform autopsies is still complete, extensive, and systematic macroscopic sampling of organs and districts followed by histopathological analysis, in addition to immunohistochemical and molecular investigations in those cases in which they are necessary. In fact, when neoplasms are detected, the application of advanced techniques such as immunohistochemistry and molecular diagnostics is fundamental to accurately certify death.


Subject(s)
Adamantinoma , COVID-19 , Sarcoma, Ewing , Male , Humans , Sarcoma, Ewing/diagnosis , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology , Adamantinoma/pathology , SARS-CoV-2 , Immunohistochemistry , Biomarkers, Tumor/metabolism
3.
Sci Rep ; 12(1): 4058, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-2004786

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is a key host protein by which severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enters and multiplies within cells. The level of ACE2 expression in the lung is hypothesised to correlate with an increased risk of severe infection and complications in COrona VIrus Disease 2019 (COVID-19). To test this hypothesis, we compared the protein expression status of ACE2 by immunohistochemistry (IHC) in post-mortem lung samples of patients who died of severe COVID-19 and lung samples obtained from non-COVID-19 patients for other indications. IHC for CD61 and CD163 was performed for the assessment of platelet-rich microthrombi and macrophages, respectively. IHC for SARS-CoV-2 viral antigen was also performed. In a total of 55, 44 COVID-19 post-mortem lung samples were tested for ACE2, 36 for CD163, and 26 for CD61, compared to 15 non-covid 19 control lung sections. Quantification of immunostaining, random sampling, and correlation analysis were used to substantiate the morphologic findings. Our results show that ACE2 protein expression was significantly higher in COVID-19 post-mortem lung tissues than in controls, regardless of sample size. Histomorphology in COVID-19 lungs showed diffuse alveolar damage (DAD), acute bronchopneumonia, and acute lung injury with SARS-CoV-2 viral protein detected in a subset of cases. ACE2 expression levels were positively correlated with increased expression levels of CD61 and CD163. In conclusion, our results show significantly higher ACE2 protein expression in severe COVID-19 disease, correlating with increased macrophage infiltration and microthrombi, suggesting a pathobiological role in disease severity.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Lung/metabolism , Acute Lung Injury/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/genetics , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Autopsy , COVID-19/virology , Case-Control Studies , Female , Humans , Immunohistochemistry , Integrin beta3/genetics , Integrin beta3/metabolism , Lung/pathology , Male , Middle Aged , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , SARS-CoV-2/isolation & purification , Severity of Illness Index , Young Adult
4.
Expert Rev Mol Diagn ; 22(5): 559-574, 2022 05.
Article in English | MEDLINE | ID: covidwho-1878677

ABSTRACT

INTRODUCTION: The emergence of SARS-CoV-2, the causative agent the COVID-19 pandemic, has led to a rapidly expanding arsenal of molecular diagnostic assays for the detection of viral material in tissue specimens. AREAS COVERED: We review the value and shortcomings of available tissue-based assays for SARS-CoV-2 detection in formalin-fixed paraffin-embedded (FFPE) tissue, including immunohistochemistry, in situ hybridization, and quantitative reverse transcription PCR (RT-qPCR). The validation, accuracy, and comparative utility of each method is discussed. Subsequently, we identify commercially available antibodies which render the greatest specificity and reproducibility of staining in FFPE specimens. EXPERT OPINION: We offer expert opinion on the efficacy of such techniques and guidance for future implementation, both clinical and experimental.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Immunohistochemistry , In Situ Hybridization , Pandemics , RNA , RNA, Viral/genetics , Reproducibility of Results , SARS-CoV-2/genetics , Sensitivity and Specificity
5.
Int. j. morphol ; 39(4): 1123-1131, ago. 2021. ilus, tab
Article in English | WHO COVID, LILACS (Americas) | ID: covidwho-1863067

ABSTRACT

SUMMARY: Adriamycin (ADR) is an anthracycline antibiotic used for treatment of many types of cancer. However, its applications may damage to healthy tissues. Chloroquine (CLQ) is an anti-inflammatory agent used in treatment of many inflammation associated diseases such as malaria and rheumatoid arthritis. Moreover, it is used in the treatment of pneumonia caused by COVID-19. The aim of this study is to determine possible therapeutic effects of Chloroquine on Adriamycin-induced testicular toxicity in rats. We investigated the effect of CLQ on testicular injury caused by ADR. Rats were divided into four groups: Control, ADR, CLQ, ADR+CLQ. After administrations, animals were sacrificed, and testis tissues were extracted from the animals for the further examinations. Histopathological changes in testis tissues were evaluated and TNF-α and IL-6 immunostaining were performed to determine the expression levels of these cytokines. TUNEL method were used for evaluation of apoptotic index. Moreover, serum testosterone levels were measured by ELISA assay. We observed that ADR group showed histopathological deterioration when compared to the Control group and CLQ treatment ameliorated this damage induced by Adriamycin.An increase in TNF-α and IL-6 immunoreactivities and in the number of apoptotic cells and a decrease in serum testosterone levels were determined in the ADR group compared to the Control and CLQ group. Furthermore, our examinations showed an improvement in testicular tissue in ADR+CLQ group in terms of these parameters when compared to the ADR group. We suggest that CLQ can be used as a protective agent to reduce the toxic effects of Adriamycin as a result of its anti-inflammatory and anti-apoptotic properties.


RESUMEN: La adriamicina (ADR) es un antibiótico de antraciclina que se usa para el tratamiento de muchos tipos de cáncer. Sin embargo, sus aplicaciones pueden dañar los tejidos sanos. La cloroquina (CLQ) es un agente antiinflamatorio que se utiliza en el tratamiento de enfermedades asociadas a la inflamación, tal como la malaria y la artritis reumatoide. También se utiliza en el tratamiento de la neumonía causada por COVID-19. El objetivo de este estudio fue determinar los posibles efectos terapéuticos de la cloroquina sobre la toxicidad testicular inducida por adriamicina en ratas. Investigamos el efecto de CLQ sobre la lesión testicular causada por ADR. Las ratas se dividieron en cuatro grupos: Control, ADR, CLQ, ADR + CLQ. Después de las administraciones, se sacrificaron los animales y se extrajeron los testículos de los animales para los exámenes adicionales. Se evaluaron los cambios histopatológicos en los tejidos testiculares y se realizó la inmunotinción de TNF-α e IL-6 para determinar los niveles de expresión de estas citocinas. Se utilizó el método TUNEL para la evaluación del índice apoptótico. Además, los niveles de testosterona en suero se midieron mediante un ensayo ELISA. El grupo ADR mostró un deterioro histopatológico en comparación con el grupo Control y observamos que el tratamiento con CLQ mejoró el daño inducido por Adriamicina. Un aumento en las inmunorreactividades de TNF-α e IL-6 y en el número de células apoptóticas además de una disminución en los niveles séricos de testosterona se determinaron en el grupo de ADR en comparación con el grupo de control y CLQ. Además, nuestros exámenes mostraron una mejora en el tejido testicular en el grupo ADR + CLQ en términos de estos parámetros en comparación con el grupo ADR. Sugerimos que CLQ se puede utilizar como agente protector para reducir los efectos tóxicos de la Adriamicina, gracias a sus propiedades antiinflamatorias y antiapoptóticas.


Subject(s)
Animals , Male , Rats , Testicular Diseases/chemically induced , Testicular Diseases/drug therapy , Doxorubicin/adverse effects , Chloroquine/administration & dosage , Enzyme-Linked Immunosorbent Assay , Immunohistochemistry , Interleukin-6 , Tumor Necrosis Factor-alpha , Rats, Wistar , Apoptosis/drug effects , In Situ Nick-End Labeling , Inflammation , Antibiotics, Antineoplastic/adverse effects
6.
Methods Mol Biol ; 2452: 291-303, 2022.
Article in English | MEDLINE | ID: covidwho-1844272

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can be demonstrated in tissue sections by immunohistochemistry (IHC), which has the power to localize in bright field specific antigens in cells and tissues. The use of double or triple immunostains is capable of highlighting which cells are infected and/or the relationship of infected cell with other cells and tissue structures. In addition, immunoenzymatic multi-staining permits the simultaneous identification, localization, and enumeration of different cellular epitopes. Moreover, this method improves analytical precision, decreasing the time required for morphometric quantification, maximizing the information obtained from a single slide of paraffin-embedded tissue.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Epitopes , Humans , Immunohistochemistry
7.
BJOG ; 129(2): 256-266, 2022 01.
Article in English | MEDLINE | ID: covidwho-1831884

ABSTRACT

BACKGROUND: Pregnant women have been identified as a potentially at-risk group concerning COVID-19 infection, but little is known regarding the susceptibility of the fetus to infection. Co-expression of ACE2 and TMPRSS2 has been identified as a prerequisite for infection, and expression across different tissues is known to vary between children and adults. However, the expression of these proteins in the fetus is unknown. METHODS: We performed a retrospective analysis of a single cell data repository. The data were then validated at both gene and protein level by performing RT-qPCR and two-colour immunohistochemistry on a library of second-trimester human fetal tissues. FINDINGS: TMPRSS2 is present at both gene and protein level in the predominantly epithelial fetal tissues analysed. ACE2 is present at significant levels only in the fetal intestine and kidney, and is not expressed in the fetal lung. The placenta also does not co-express the two proteins across the second trimester or at term. INTERPRETATION: This dataset indicates that the lungs are unlikely to be a viable route of SARS-CoV2 fetal infection. The fetal kidney, despite presenting both the proteins required for the infection, is anatomically protected from the exposure to the virus. However, the gastrointestinal tract is likely to be susceptible to infection due to its high co-expression of both proteins, as well as its exposure to potentially infected amniotic fluid. TWEETABLE ABSTRACT: This work provides detailed mechanistic insight into the relative protection & vulnerabilities of the fetus & placenta to SARS-CoV-2 infection by scRNAseq & protein expression analysis for ACE2 & TMPRSS2. The findings help to explain the low rate of vertical transmission.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19 , Gene Expression Profiling , Placenta/metabolism , Serine Endopeptidases/genetics , Adult , COVID-19/epidemiology , COVID-19/genetics , COVID-19/transmission , Databases, Nucleic Acid , Disease Susceptibility/metabolism , Female , Fetal Research , Gene Expression Profiling/methods , Gene Expression Profiling/statistics & numerical data , Genetic Testing/methods , Gestational Age , Humans , Immunohistochemistry , Infectious Disease Transmission, Vertical , Pregnancy , Protective Factors , Ribonucleoproteins, Small Cytoplasmic/analysis , SARS-CoV-2/physiology
9.
Am J Surg Pathol ; 46(2): 258-267, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1778992

ABSTRACT

Bizarre (atypical/symplastic) cells have been described in various gynecologic normal tissues and benign neoplasms. This type of bizarre cytologic change is usually an incidental finding and is regarded as a benign process. We describe 17 cases of bizarre chorionic-type trophoblast in second-trimester and third-trimester placentas that created concern for an underlying/undersampled or incipient intraplacental trophoblastic neoplasm, predominantly found in intervillous trophoblastic islands (11/17), placental septae (6/17), chorionic plate (1/17), and/or the chorion layer of fetal membranes (2/17). The bizarre trophoblastic cells exhibited sheet-like or nested architecture, had a multifocal/patchy distribution, and/or were present as individual cells within hyaline stroma; they were characterized by large nuclei with smudgy chromatin and occasional intranuclear pseudoinclusions. The degree of atypia was classified as mild (0/17), moderate (3/17), or severe (14/17). Mitotic figures and necrosis were not identified. A dual immunohistochemical stain for trophoblast (hydroxyl-delta-5-steroid dehydrogenase) and a proliferation marker (Ki-67), performed in 15 cases, demonstrated 0% to very low proliferative activity within the bizarre trophoblast (0% to 2% [10/15], 3% to 8% [5/15]). Immunohistochemical stains for fumarate hydratase showed intact/retained expression in the bizarre cells in 7 of 7 cases. Clinical follow-up ranged from 1 to 45 months, and all patients were alive and well without subsequent evidence of a gestational trophoblastic or other neoplasms. We conclude that bizarre chorionic-type trophoblast in second-trimester or third-trimester placentas have the potential to mimic an intraplacental trophoblastic neoplasm but are likely a benign degenerative change. This study expands the spectrum of bizarre cells that occur in the gynecologic tract.


Subject(s)
Placenta Diseases/pathology , Trophoblastic Neoplasms/pathology , Trophoblasts/pathology , Uterine Neoplasms/pathology , Adolescent , Adult , Biopsy , Diagnosis, Differential , Female , Fumarate Hydratase/analysis , Humans , Immunohistochemistry , Ki-67 Antigen/analysis , Middle Aged , Multienzyme Complexes/analysis , Placenta Diseases/metabolism , Predictive Value of Tests , Pregnancy , Pregnancy Trimester, Second , Pregnancy Trimester, Third , Progesterone Reductase/analysis , Steroid Isomerases/analysis , Trophoblastic Neoplasms/chemistry , Trophoblasts/chemistry , United States , Uterine Neoplasms/chemistry , Young Adult
11.
Microbiol Spectr ; 10(1): e0127121, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1752773

ABSTRACT

The pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global outbreak and prompted an enormous research effort. Still, the subcellular localization of the coronavirus in lungs of COVID-19 patients is not well understood. Here, the localization of the SARS-CoV-2 proteins is studied in postmortem lung material of COVID-19 patients and in SARS-CoV-2-infected Vero cells, processed identically. Correlative light and electron microscopy on semithick cryo-sections demonstrated induction of electron-lucent, lipid-filled compartments after SARS-CoV-2 infection in both lung and cell cultures. In lung tissue, the nonstructural protein 4 and the stable nucleocapsid N-protein were detected on these novel lipid-filled compartments. The induction of such lipid-filled compartments and the localization of the viral proteins in lung of patients with fatal COVID-19 may explain the extensive inflammatory response and provide a new hallmark for SARS-CoV-2 infection at the final, fatal stage of infection. IMPORTANCE Visualization of the subcellular localization of SARS-CoV-2 proteins in lung patient material of COVID-19 patients is important for the understanding of this new virus. We detected viral proteins in the context of the ultrastructure of infected cells and tissues and discovered that some viral proteins accumulate in novel, lipid-filled compartments. These structures are induced in Vero cells but, more importantly, also in lung of patients with COVID-19. We have characterized these lipid-filled compartments and determined that this is a novel, virus-induced structure. Immunogold labeling demonstrated that cellular markers, such as CD63 and lipid droplet marker PLIN-2, are absent. Colocalization of lipid-filled compartments with the stable N-protein and nonstructural protein 4 in lung of the last stages of COVID-19 indicates that these compartments play a key role in the devastating immune response that SARS-CoV-2 infections provoke.


Subject(s)
COVID-19/metabolism , Lipid Metabolism/physiology , Lipids/analysis , Lung/metabolism , Nucleocapsid/analysis , SARS-CoV-2 , Adolescent , Aged , Animals , COVID-19/pathology , Child, Preschool , Chlorocebus aethiops , Disease Outbreaks , Female , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Lung/cytology , Lung/pathology , Lung/ultrastructure , Male , Microscopy, Immunoelectron , Middle Aged , Nucleocapsid/metabolism , Rabbits , SARS-CoV-2/ultrastructure , Vero Cells/virology
12.
Mol Med Rep ; 25(4)2022 04.
Article in English | MEDLINE | ID: covidwho-1715860

ABSTRACT

In addition to the angiotensin­converting enzyme 2 (ACE2), a number of host cell entry mediators have been identified for severe acute respiratory syndrome coronavirus­2 (SARS­CoV­2), including transmembrane protease serine 4 (TMPRSS4). The authors have recently demonstrated the upregulation of TMPRSS4 in 11 different cancers, as well as its specific expression within the central nervous system using in silico tools. The present study aimed to expand the initial observations and, using immunohistochemistry, TMPRSS4 protein expression in the gastrointestinal (GI) tract and lungs was further mapped. Immunohistochemistry was performed on tissue arrays and lung tissues of patients with non­small cell lung cancer with concurrent coronavirus disease 2019 (COVID­19) infection using TMPRSS4 antibody. The results revealed that TMPRSS4 was abundantly expressed in the oesophagus, stomach, small intestine, jejunum, ileum, colon, liver and pancreas. Moreover, the extensive TMPRSS4 protein expression in the lungs of a deceased patient with COVID­19 with chronic obstructive pulmonary disease and bronchial carcinoma, as well in the adjacent normal tissue, was demonstrated for the first time, at least to the best of our knowledge. On the whole, the immunohistochemistry data of the present study suggest that TMPRSS4 may be implicated in the broader (pulmonary and extra­pulmonary) COVID­19 symptomatology; thus, it may be responsible for the tropism of this coronavirus both in the GI tract and lungs.


Subject(s)
COVID-19/pathology , Gastrointestinal Tract/pathology , Lung Neoplasms/pathology , Lung/pathology , Membrane Proteins/metabolism , Serine Endopeptidases/metabolism , Aged , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/virology , Gastrointestinal Tract/virology , Humans , Immunohistochemistry , Lung/virology , Lung Neoplasms/complications , Male , Membrane Proteins/analysis , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serine Endopeptidases/analysis , Virus Internalization
13.
Appl Immunohistochem Mol Morphol ; 30(2): 83-90, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1691737

ABSTRACT

This manuscript details a stringent protocol for the in situ detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) RNA and 4 different viral proteins: envelope, spike, membrane, and nucleocapsid. Key aspects of the protocol are: (1) analysis of adjacent (serial) sections for viral RNA and at least 2 viral proteins; (2) cytologic alterations in the cells scored as virus positive based on an hematoxylin and eosin stain; (3) in situ demonstration of a host response in the cells scored as virus positive; (4) co-labeling experiments that show that the viral RNA and/or proteins co-localize with each other and the angiotensin converting enzyme 2 (ACE2) receptor; and (5) lack of signal in equivalent tissues obtained before the pandemic. Optimization conditions for the four viral proteins as well as the ACE2 receptor were each antigen retrieval in an EDTA solution which facilitates co-expression analyses. It is recommended not to use either electron microscopy or qRTPCR as methods to corroborate in situ SARS-CoV2 detection. This stringent protocol, that relies on sequentially labeled serial sections and can be completed in one working day, demonstrated the following: (1) infectious SARS-CoV2 is abundant in the lung in fatal coronavirus disease-2019 and is seen primarily in macrophages and endothelial cells; (2) circulating viral capsid proteins (spike, envelope, membrane without RNA) are evident in multiple organs including the skin and brain where it is endocytosed by ACE2+ cells and induce an endothelialitis; (3) both the infectious virus and circulating spike protein induce complement activation and cytologic changes in the viral positive cells.


Subject(s)
COVID-19/metabolism , Immunohistochemistry/standards , SARS-CoV-2/metabolism , Adult , Aged , Aged, 80 and over , COVID-19/genetics , Female , Humans , Male , Middle Aged , Reference Standards , SARS-CoV-2/genetics
14.
Diagn Pathol ; 17(1): 31, 2022 Feb 17.
Article in English | MEDLINE | ID: covidwho-1690905

ABSTRACT

BACKGROUND: Despite a reported cardiac injury in patients with new coronavirus infection, the possibility and specifics of genuine viral myocarditis in COVID-19 remains not fully clear. PURPOSE: To study the presence of SARS-CoV-2 in the myocardium and the morphological properties of myocarditis in patients with severe coronavirus infection (COVID-19). METHODS: Autopsy data of eight elderly patients (75.6 ± 7.4 years), four male and four female, with severe new coronavirus infection were studied. The lifetime diagnosis of COVID-19 is based on a positive result of the PCR study. The inclusion criterion was the presence of morphological signs of myocarditis according to the Dallas criteria. A standard histological examination included staining by hematoxylin and eosin, toluidin blue and Van Gieson. An immunohistochemical study was performed using antibodies to CD3, CD 68, CD20, perforin, toll-like receptor (TLR) types 4 and 9. PCR in real-time was performed to determine the viral RNA in the myocardium. RESULTS: All patients had severe bilateral viral pneumonia. In all cases, myocarditis was not clinically diagnosed. Morphological examination of the heart found signs of active lymphocytic myocarditis. PCR identified the SARS-Cov2 RNA in all cases. There were also signs of destructive coronaritis in all cases, thrombovasculitis, lymphocytic pericarditis (in 3 cases) and endocarditis (in 2 cases). The absence of neutrophils confirms the aseptic nature of inflammation. An immunohistochemical study showed the CD3-positive T lymphocytes in the infiltrates. Increased expression of TLR type 4 and less 9 was also detected. CONCLUSION: Morphological and immunohistochemical evidence of myocarditis in COVID-19 was presented. Lymphocytic infiltrations and positive PCR confirm the viral nature of inflammation. Myocarditis in COVID-19 is also characterized by coronaritis with microvascular thrombosis and associated with lymphocytic endo- and pericarditis.


Subject(s)
COVID-19/pathology , Myocarditis/pathology , Pneumonia, Viral/pathology , SARS-CoV-2/isolation & purification , Aged , Aged, 80 and over , Autopsy , COVID-19/complications , COVID-19/diagnosis , COVID-19/virology , Female , Heart/virology , Humans , Immunohistochemistry , Inflammation , Lymphocytes/pathology , Male , Middle Aged , Myocarditis/complications , Myocarditis/diagnosis , Myocarditis/virology , Myocardium/pathology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2/genetics
15.
Int J Mol Sci ; 22(16)2021 Aug 20.
Article in English | MEDLINE | ID: covidwho-1662689

ABSTRACT

Breast cancer continues to be one of the main causes of morbidity and mortality globally and was the leading cause of cancer death in women in Spain in 2020. Early diagnosis is one of the most effective methods to lower the incidence and mortality rates of breast cancer. The human metalloproteinases (MMP) mainly function as proteolytic enzymes degrading the extracellular matrix and plays important roles in most steps of breast tumorigenesis. This retrospective cohort study shows the immunohistochemical expression levels of MMP-1, MMP-2, MMP-3, and MMP-9 in 154 women with breast cancer and 42 women without tumor disease. The samples of breast tissue are assessed using several tissue matrices (TMA). The percentages of staining (≤50%->50%) and intensity levels of staining (weak, moderate, or intense) are considered. The immunohistochemical expression of the MMP-1-intensity (p = 0.043) and MMP-3 percentage (p = 0.018) and intensity, (p = 0.025) present statistically significant associations with the variable group (control-case); therefore, expression in the tumor tissue samples of these MMPs may be related to the development of breast cancer. The relationships between these MMPs and some clinicopathological factors in breast cancer are also evaluated but no correlation is found. These results suggest the use of MMP-1 and MMP-3 as potential biomarkers of breast cancer diagnosis.


Subject(s)
Breast Neoplasms/metabolism , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 3/metabolism , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Breast/pathology , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Case-Control Studies , Cohort Studies , Disease Progression , Female , Humans , Immunohistochemistry/methods , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 3/genetics , Matrix Metalloproteinase 9/metabolism , Metalloproteases/genetics , Metalloproteases/metabolism , Middle Aged , Retrospective Studies , Spain , Tissue Inhibitor of Metalloproteinases/metabolism
16.
Viruses ; 14(2)2022 01 21.
Article in English | MEDLINE | ID: covidwho-1650643

ABSTRACT

The increased plasma levels of von Willebrand factor (VWF) in patients with COVID-19 was reported in many studies, and its correlation with disease severity and mortality suggest its important role in the pathogenesis of thrombosis in COVID-19. We performed histological and immunohistochemical studies of the lungs of 29 patients who died from COVID-19. We found a significant increase in the intensity of immunohistochemical reaction for VWF in the pulmonary vascular endothelium when the disease duration was more than 10 days. In the patients who had thrombotic complications, the VWF immunostaining in the pulmonary vascular endothelium was significantly more intense than in nonsurvivors without thrombotic complications. Duration of disease and thrombotic complications were found to be independent predictors of increased VWF immunostaining in the endothelium of pulmonary vessels. We also revealed that bacterial pneumonia was associated with increased VWF staining intensity in pulmonary arterial, arteriolar, and venular endothelium, while lung ventilation was an independent predictor of increased VWF immunostaining in arterial endothelium. The results of the study demonstrated an important role of endothelial VWF in the pathogenesis of thrombus formation in COVID-19.


Subject(s)
COVID-19/complications , Lung/blood supply , Venous Thrombosis/etiology , Venous Thrombosis/pathology , von Willebrand Factor/analysis , Adult , Autopsy , COVID-19/blood , Endothelium, Vascular/immunology , Female , Humans , Immunohistochemistry/methods , Lung/pathology , Male , Middle Aged , Pneumonia, Bacterial/immunology , Pulmonary Embolism , Severity of Illness Index , Venous Thrombosis/classification
17.
Int J Mol Sci ; 23(1)2021 Dec 24.
Article in English | MEDLINE | ID: covidwho-1580700

ABSTRACT

Acute respiratory distress syndrome (ARDS) followed by repair with lung remodeling is observed in COVID-19. These findings can lead to pulmonary terminal fibrosis, a form of irreversible sequelae. There is evidence that TGF-ß is intimately involved in the fibrogenic process. When activated, TGF-ß promotes the differentiation of fibroblasts into myofibroblasts and regulates the remodeling of the extracellular matrix (ECM). In this sense, the present study evaluated the histopathological features and immunohistochemical biomarkers (ACE-2, AKT-1, Caveolin-1, CD44v6, IL-4, MMP-9, α-SMA, Sphingosine-1, and TGF-ß1 tissue expression) involved in the TGF-ß1 signaling pathways and pulmonary fibrosis. The study consisted of 24 paraffin lung samples from patients who died of COVID-19 (COVID-19 group), compared to 10 lung samples from patients who died of H1N1pdm09 (H1N1 group) and 11 lung samples from patients who died of different causes, with no lung injury (CONTROL group). In addition to the presence of alveolar septal fibrosis, diffuse alveolar damage (DAD) was found to be significantly increased in the COVID-19 group, associated with a higher density of Collagen I (mature) and III (immature). There was also a significant increase observed in the immunoexpression of tissue biomarkers ACE-2, AKT-1, CD44v6, IL-4, MMP-9, α-SMA, Sphingosine-1, and TGF-ß1 in the COVID-19 group. A significantly lower expression of Caveolin-1 was also found in this group. The results suggest the participation of TGF-ß pathways in the development process of pulmonary fibrosis. Thus, it would be plausible to consider therapy with TGF-ß inhibitors in those patients recovered from COVID-19 to mitigate a possible development of pulmonary fibrosis and its consequences for post-COVID-19 life quality.


Subject(s)
COVID-19/metabolism , Pulmonary Fibrosis/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Actins/metabolism , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/pathology , Caveolin 1/metabolism , Collagen Type I/metabolism , Collagen Type III/metabolism , Female , Humans , Hyaluronan Receptors/metabolism , Immunohistochemistry , Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/metabolism , Influenza, Human/pathology , Interleukin-4/metabolism , Male , Matrix Metalloproteinase 9/metabolism , Middle Aged , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Retrospective Studies , Transforming Growth Factor beta1/metabolism , COVID-19 Drug Treatment
18.
Vet Pathol ; 59(4): 696-706, 2022 07.
Article in English | MEDLINE | ID: covidwho-1582699

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019, which ranges from fatal disease in some to mild or subclinical in most affected individuals. Many recovered human patients report persistent respiratory signs; however, lung disease in post-acute infection is poorly understood. Our objective was to describe histologic lung lesions and viral loads following experimental SARS-CoV-2 infection in 11 cats. Microscopic evaluation at 3, 6, 10, or 28 days postinoculation (DPI) identified mild to moderate patchy interstitial pneumonia, bronchiolar epithelial damage, and occlusive histiocytic bronchiolitis. Based on immunohistochemistry, alveolar septal thickening was due to CD204-positive macrophages, fewer B and T lymphocytes, type II pneumocytes, and capillary proliferation with a relative dearth of fibrosis. In blood vessel endothelium, there was reactive hypertrophy or vacuolar degeneration and increased MHC II expression at all time points. Unexpectedly, one cat from the 28 DPI group had severe subacute regionally extensive lymphohistiocytic pneumonia with multifocal consolidation, vasculitis, and alveolar fibrin. Reverse transcriptase-quantitative polymerase chain reaction identified SARS-CoV-2 RNA within the lung at 3 and 6 DPI, and viral RNA was below the limit of detection at 10 and 28 DPI, suggesting that pulmonary lesions persist beyond detection of viral RNA. These findings clarify our comparative understanding of disease induced by SARS-CoV-2 and suggest that cats can serve as an informative model to study post-acute pulmonary sequelae.


Subject(s)
COVID-19 , Cat Diseases , Animals , COVID-19/veterinary , Cat Diseases/pathology , Cats , Humans , Immunohistochemistry , Lung/pathology , RNA, Viral , SARS-CoV-2
19.
Int J Surg Pathol ; 30(4): 393-396, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1582644

ABSTRACT

Compared to the parental SARS-CoV-2 virus, infections by the now dominant Delta variant of SARS-CoV-2 appear to be more common and more severe in pregnant women. The need for a robust, cheap, and quick method for diagnosing placental infection by SARS-CoV-2 has thus become more acute. Here, we describe a highly sensitive and specific immunohistochemical assay for SARS-CoV-2 nucleocapsid protein for routine use in placental pathology practice.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , COVID-19/diagnosis , Female , Humans , Immunohistochemistry , Placenta/pathology , Pregnancy , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/pathology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
20.
Cell ; 184(24): 5932-5949.e15, 2021 11 24.
Article in English | MEDLINE | ID: covidwho-1549679

ABSTRACT

Anosmia, the loss of smell, is a common and often the sole symptom of COVID-19. The onset of the sequence of pathobiological events leading to olfactory dysfunction remains obscure. Here, we have developed a postmortem bedside surgical procedure to harvest endoscopically samples of respiratory and olfactory mucosae and whole olfactory bulbs. Our cohort of 85 cases included COVID-19 patients who died a few days after infection with SARS-CoV-2, enabling us to catch the virus while it was still replicating. We found that sustentacular cells are the major target cell type in the olfactory mucosa. We failed to find evidence for infection of olfactory sensory neurons, and the parenchyma of the olfactory bulb is spared as well. Thus, SARS-CoV-2 does not appear to be a neurotropic virus. We postulate that transient insufficient support from sustentacular cells triggers transient olfactory dysfunction in COVID-19. Olfactory sensory neurons would become affected without getting infected.


Subject(s)
Autopsy/methods , COVID-19/mortality , COVID-19/virology , Olfactory Bulb/virology , Olfactory Mucosa/virology , Respiratory Mucosa/virology , Aged , Anosmia , COVID-19/physiopathology , Endoscopy/methods , Female , Glucuronosyltransferase/biosynthesis , Humans , Immunohistochemistry , In Situ Hybridization , Male , Microscopy, Fluorescence , Middle Aged , Olfaction Disorders , Olfactory Receptor Neurons/metabolism , Respiratory System , SARS-CoV-2 , Smell
SELECTION OF CITATIONS
SEARCH DETAIL